想学人工智能如何入手 需要学哪些课程

2023-01-10 19:26 2 浏览

学习编程,主要掌握Python,跟着课程也学习了一些C、HTML、CSS、J***aScript;学习了数据科学的理论和编程方法,如:Pandas, Numpy, Matplotlib等;在线学习了四套关于Machine Learning和Deep Learning的课程。

学习人工智能怎么入门

阶段一是Python语言(用时5周,包括基础语法、面向对象、高级课程、经典课程);阶段二是Linux初级(用时1周,包括Linux系统基本指令、常用服务安装);阶段三是Web开发之Diango(5周+2周前端+3周diango);阶段四是Web开发之Flask(用时2周);

阶段五是Web框架之Tornado(用时1周);阶段六是docker容器及服务发现(用时2周);阶段七是爬虫(用时2周);阶段八是数据挖掘和人工智能(用时3周)。

如何自学人工智能

新手可以从基础的基础开始学起,不止线性规划和随机森林,连笔记本怎么用,NumPy等重要的Python库怎么用,都有手把手教程。

到中后期,可以学着搭高级的RNN,厉害的GAN,这里还有许多实际应用示例可以跑。毕竟,这是一个注重实践的项目。

这里的算法示例,可以用Google Colab来跑,免费借用云端TPU/GPU,只要有个Chrome就够了。没梯子的话,就用Jupyter Notebook来跑咯。

基础部分,除了有Python指南、笔记本用法,以及Numpy、Pandas这些库的用法,还有线性规划、逻辑规划、随机森林、k-means聚类这些机器学习的基本技术。

深度学习入门,包括了PyTorch指南、多层感知器 (MLP) 、数据与模型、面向对象的机器学习、卷积神经网络 (CNN) 、嵌入,以及递归神经网络 (RNN) 。

深度学习高阶,会涉及更高级的RNN、自编码器、生成对抗网络 (GAN) ,以及空间变换网络 (Spatial Transformer Networks) 等等。

最后是应用。计算机视觉是个重要的方向。除此之外,还会涉及时间序列分析 (Time Series Analysis) ,商品推荐系统,预训练语言模型,多任务学习,强化学习等等示例可以运行。也可以修改示例,写出自己的应用。

相关推荐
专业解读排行榜