0
浏览数据科学与大数据技术,强调交叉学科特点,以大数据分析为核心,以统计学、计算机科学和数学为三大基础支撑性学科,培养面向多层次应用需求的复合型人才。
数学分析、高等代数、普通物理数学与信息科学概论、数据结构、数据科学导论、程序设计导论、程序设计实践、离散数学、概率与统计、算法分析与设计、数据计算智能、数据库系统概论、计算机系统基础、并行体系结构与编程、非结构化大数据分析等。
第一阶段:大数据前沿知识及hadoop入门,大数据前言知识的介绍,课程的介绍,Linux和unbuntu系统基础,hadoop的单机和伪分布模式的安装配置。
第二阶段:hadoop部署进阶。Hadoop集群模式搭建,hadoop分布式文件系统HDFS深入剖析。使用HDFS提供的api进行HDFS文件操作。Mapreduce概念及思想。
第三阶段:大数据导入与存储。mysql数据库基础知识,hive的基本语法。hive的架构及设计原理。hive部署安装与案例。sqoop安装及使用。sqoop组件导入到hive。
第四阶段:Hbase理论与实战。Hbase简介。安装与配置。hbase的数据存储。项目实战。
第五阶段:Spaer配置及使用场景。scala基本语法。spark介绍及发展历史,spark stant a lone模式部署。sparkRDD详解。
第六阶段:spark大数据分析原理。spark内核,基本定义,spark任务调度。sparkstreaming实时流计算。sparkmllib机器学习。sparksql查询。